sexta-feira, 23 de dezembro de 2011

Motor a vapor mais pequeno do mundo tem apenas alguns micrómetros de tamanho

A tecnologia que funciona em larga escala pode causar problemas inesperados em pequena escala. E estes podem ser de natureza fundamental. Isto é porque as leis que prevalecem no micro- e no macro-mundo são diferentes. Apesar das leis diferentes, alguns processos físicos são surpreendentemente semelhantes em ambas as escalas. Clemens Bechinger, professor da Universidade de Stuttgart e investigador no Instituto Max Planck, e o seu colega Valentin Blickle já observaram uma dessas semelhanças.
"Nós desenvolvemos o motor a vapor mais pequeno do mundo, ou para ser mais preciso motor Stirling mais pequeno, e descobrimos que a máquina realmente executa trabalho", diz Clemens Bechinger. "Isto não era necessariamente de se esperar, porque a máquina é tão pequena que o seu movimento é dificultado por processos microscópicos que não têm consequências no mundo macro."
As leis do micromundo fizeram com que os pesquisadores não fossem capazes de construir o pequeno motor de acordo com as proporções de um de tamanho normal. No motor de calor inventado há quase 200 anos por Robert Stirling, um cilindro cheio de gás é aquecido e arrefecido periodicamente para que o gás se expanda e contraia. Isso faz com que um pistão execute um movimento com o qual pode conduzir uma roda, por exemplo.
"Nós diminuímos com sucesso o tamanho das peças essenciais de um motor térmico, como o gás de trabalho e o pistão, para apenas alguns micrómetros e depois montámo-los muma máquina", diz Valentin Blickle. O gás de trabalho na experiência já não consiste num número incontável de moléculas, mas apenas em algo que está contido numa partícula de plástico que mede apenas três micrómetros (um micrómetro corresponde a um milésimo de milímetro), que flutua na água. Uma vez que a partícula colóide é cerca de 10.000 vezes maior do que um átomo, os pesquisadores podem observar o seu movimento diretamente mum microscópio.
Os físicos substituíram o pistão, que se move periodicamente para cima e para baixo num cilindro, por um feixe de laser focalizado cuja intensidade é periodicamente variada. A força óptica do laser limita o movimento da partícula de plástico para um maior e menor grau, tal como a compressão e expansão do gás no cilindro de um motor térmico de grande porte. A partícula, então, trabalha no campo do laser óptico. Para que as contribuições para o trabalho não se anulem mutuamente durante a compressão e expansão, estas devem ter lugar em diferentes temperaturas. Isto é conseguido através do sistema de aquecimento a partir do exterior durante o processo de expansão, assim como a caldeira de uma máquina a vapor. Os pesquisadores substituíram o fogo do carvão de um motor a vapor à moda antiga, por um feixe de laser, que aquece a água de repente, mas também permite arrefecê-la mal esteja desligado.
O facto de que a máquina de Stuttgart apresenta um rendimento baixo deve-se principalmente às moléculas de água que circundam a partícula de plástico. As moléculas de água estão em constante movimento devido à contante mudança na sua temperatura e chocam com a micropartícula. Nestas colisões aleatórias, a partícula de plástico efetua constantemente trocas de energia com o meio envolvente na mesma ordem de grandeza que a micromáquina converte energia em trabalho. "Este efeito significa que a quantidade de energia obtida varia muito de ciclo para ciclo, e ainda pode provocar uma paralisação no caso extremo", explica Valentin Blickle. Uma vez que as máquinas macroscópicas produzem energia com cerca de 20 ordens de magnitude mais elevada, as menores energias da colisão das minúsculas partículas não são importantes.
Os físicos estão admirados porque a máquina converte sempre a mesma energia por ciclo, em média, apesar das diferentes potências, e até apresenta a mesma eficiência que a sua homóloga macroscópica em plena carga. "As nossas experiências fornecem-nos uma visão inicial do balanço energético de uma máquina operando em dimensões microscópicas. Embora a nossa máquina não forneça nenhum trabalho útil por enquanto, não existem obstáculos termodinâmicos, em princípio, que proíbam isso de ocorrer em pequenas dimensões, ", diz Clemens Bechinger. Esta é certamente uma boa notícia para a concepção micromáquinas altamente eficientes.

Fonte: Science Daily

Sem comentários:

Enviar um comentário

Deixe aqui o seu comentário.